Source code for stable_learning_control.user_config

"""File used for storing several configuration values for the SLC package.

.. literalinclude:: /../../stable_learning_control/user_config.py
   :language: python
   :linenos:
   :lines: 8-
"""

import os.path as osp

# Default neural network backend for each algo (Must be either 'tf2' or 'pytorch').
[docs]DEFAULT_BACKEND = { "lac": "pytorch", "latc": "pytorch", "sac": "pytorch", }
# Where experiment outputs are saved by default:
[docs]DEFAULT_DATA_DIR = osp.join(osp.abspath(osp.dirname(osp.dirname(__file__))), "data")
# Whether to automatically insert a date and time stamp into the names of save # directories:
[docs]FORCE_DATESTAMP = False
# Whether GridSearch provides automatically-generated default shorthands:
[docs]DEFAULT_SHORTHAND = True
# Tells the GridSearch how many seconds to pause for before launching experiments.
[docs]WAIT_BEFORE_LAUNCH = 5
# Print experiment config to terminal. # Logger stdout output type. # NOTE:The format in which the training diagnostics are displayed to the terminal. # Options are "table" which supplies them as a table and "line" which prints them in # one line.
[docs]DEFAULT_STD_OUT_TYPE = "line"
# Weights & Biases default job type and project.
[docs]DEFAULT_WANDB_JOB_TYPE = "train"
[docs]DEFAULT_WANDB_PROJECT = "stable-learning-control"
# TensorBoard parameters.
[docs]TB_HPARAMS_FILTER = [ "epochs", "num_of_test_episodes", "seed", "device", "save_freq", "start_policy", "export", ] # Config keys to filter out when writing hyperparameters to TensorBoard.
[docs]TB_HPARAMS_METRICS = [ "AverageEpRet", "AverageTestEpRet", ] # The metrics to be tracked in TensorBoard.