Source code for stable_learning_control.utils.mpi_utils.mpi_tools

"""Module used for managing MPI processes."""

import os
import subprocess
import sys

import numpy as np
from mpi4py import MPI


[docs]def mpi_fork(n, bind_to_core=False): """Re-launches the current script with workers linked by MPI. Also, terminates the original process that launched it. Taken almost without modification from the Baselines function of the `same name`_. .. _`same name`: https://github.com/openai/baselines/tree/master/baselines/common/mpi_fork.py Args: n (int): Number of process to split into. bind_to_core (bool, optional): Bind each MPI process to a core. Defaults to ``False``. """ # noqa if n <= 1: return if os.getenv("IN_MPI") is None: env = os.environ.copy() env.update(MKL_NUM_THREADS="1", OMP_NUM_THREADS="1", IN_MPI="1") args = ["mpirun", "-np", str(n)] if bind_to_core: args += ["-bind-to", "core"] args += [sys.executable] + sys.argv subprocess.check_call(args, env=env) sys.exit()
[docs]def msg(m, string=""): """Send message from one MPI process to the other. Args: m (str): Message you want to send. string (str, optional): Additional process description. Defaults to ``""``. """ print(("Message from %d: %s \t " % (MPI.COMM_WORLD.Get_rank(), string)) + str(m))
[docs]def pprint(input_str="", end="\n", comm=MPI.COMM_WORLD): """Print for MPI parallel programs: Only rank ``0`` prints :obj:`str`. Args: input_str (str): The string you want to print. end(str): The print end character. comm(:obj:`mpi4py.MPI.COMM_WORLD`): MPI communicator. """ if comm.rank == 0: print(str(input_str) + end)
[docs]def proc_id(): """Get rank of calling process.""" return MPI.COMM_WORLD.Get_rank()
[docs]def allreduce(*args, **kwargs): """Reduced results of a operation across all processes. Args: *args: All args to pass to thunk. **kwargs: All kwargs to pass to thunk. Returns: object: Result object. """ return MPI.COMM_WORLD.Allreduce(*args, **kwargs)
[docs]def num_procs(): """Count active MPI processes. Returns: int: The number of mpi processes. """ return MPI.COMM_WORLD.Get_size()
[docs]def broadcast(x, root=0): """Broadcast variable to other MPI processes. Args: x (object): Variable you want to broadcast. root (int, optional): Rank of the root process. Defaults to ``0``. """ MPI.COMM_WORLD.Bcast(x, root=root)
[docs]def mpi_op(x, op): """Perform a MPI operation. Args: x (object): Python variable. op (mpi4py.MPI.Op): Operation type Returns: object: Reduced mpi operation result. """ x, scalar = ([x], True) if np.isscalar(x) else (x, False) x = np.asarray(x, dtype=np.float32) buff = np.zeros_like(x, dtype=np.float32) allreduce(x, buff, op=op) return buff[0] if scalar else buff
[docs]def mpi_sum(x): """Take the sum of a scalar or vector over MPI processes. Args: x (object): Python variable. Returns: object: Reduced sum. """ return mpi_op(x, MPI.SUM)
[docs]def mpi_avg(x): """Average a scalar or vector over MPI processes. Args: x (object): Python variable. Returns: object: Reduced average. """ return mpi_sum(x) / num_procs()
[docs]def mpi_statistics_scalar(x, with_min_and_max=False): """Get mean/std and optional min/max of scalar x across MPI processes. Args: x: An array containing samples of the scalar to produce statistics for. with_min_and_max (bool, optional): If true, return min and max of x in addition to mean and std. Defaults to ``False``. Returns: tuple: Reduced mean and standard deviation. """ x = np.array(x, dtype=np.float32) global_sum, global_n = mpi_sum([np.sum(x), len(x)]) mean = global_sum / global_n global_sum_sq = mpi_sum(np.sum((x - mean) ** 2)) std = np.sqrt(global_sum_sq / global_n) # compute global std. if with_min_and_max: global_min = mpi_op(np.min(x) if len(x) > 0 else np.inf, op=MPI.MIN) global_max = mpi_op(np.max(x) if len(x) > 0 else -np.inf, op=MPI.MAX) return mean, std, global_min, global_max return mean, std