Source code for stable_learning_control.algos.pytorch.policies.critics.Q_critic

"""Lyapunov actor critic policy.

This module contains a Pytorch implementation of the Q Critic policy of
`Haarnoja et al. 2019 <https://arxiv.org/abs/1812.05905>`_.
"""

import torch
import torch.nn as nn

from stable_learning_control.algos.pytorch.common.helpers import mlp
from stable_learning_control.utils.log_utils.helpers import log_to_std_out


[docs]class QCritic(nn.Module): """Soft Q critic network. Attributes: Q (torch.nn.Sequential): The layers of the network. """ def __init__( self, obs_dim, act_dim, hidden_sizes, activation=nn.ReLU, output_activation=nn.Identity, ): """Initialise the QCritic object. Args: obs_dim (int): Dimension of the observation space. act_dim (int): Dimension of the action space. hidden_sizes (list): Sizes of the hidden layers. activation (:obj:`torch.nn.modules.activation`, optional): The activation function. Defaults to :obj:`torch.nn.ReLU`. output_activation (:obj:`torch.nn.modules.activation`, optional): The activation function used for the output layers. Defaults to :mod:`torch.nn.Identity`. """ super().__init__()
[docs] self.__device_warning_logged = False
[docs] self._obs_same_device = False
[docs] self._act_same_device = False
[docs] self.Q = mlp( [obs_dim + act_dim] + list(hidden_sizes) + [1], activation, output_activation, )
[docs] def forward(self, obs, act): """Perform forward pass through the network. Args: obs (torch.Tensor): The tensor of observations. act (torch.Tensor): The tensor of actions. Returns: torch.Tensor: The tensor containing the Q values of the input observations and actions. """ # Make sure the observations and actions are on the right device. self._obs_same_device = obs.device != self.Q[0].weight.device self._act_same_device = act.device != self.Q[0].weight.device if self._obs_same_device or self._act_same_device: if not self.__device_warning_logged: device_warn_strs = ( ("observations and actions", obs.device) if (self._obs_same_device or self._act_same_device) else ( ("observations", obs.device) if self._obs_same_device else ("actions", act.device) ) ) device_warn_msg = ( "The {} were automatically moved from ".format(device_warn_strs[0]) + "'{}' to '{}' during the '{}' forward pass.".format( device_warn_strs[1], self.Q[0].weight.device, self.__class__.__name__, ) + "Please place your observations on the '{}' ".format( self.Q[0].weight.device ) + "before calling the '{}' as converting them ".format( self.__class__.__name__ ) + "during the forward pass slows down the algorithm." ) log_to_std_out(device_warn_msg, type="warning") self.__device_warning_logged = True obs = ( obs.to(self.L[0].weight.device) if obs.device != self.Q[0].weight.device else obs ) act = ( act.to(self.L[0].weight.device) if act.device != self.Q[0].weight.device else act ) return torch.squeeze( self.Q(torch.cat([obs, act], dim=-1)), -1 ) # NOTE: Squeeze is critical to ensure q has right shape.