stable_learning_control.algos.pytorch.policies.critics.Q_critic
Lyapunov actor critic policy.
This module contains a Pytorch implementation of the Q Critic policy of Haarnoja et al. 2019.
Classes
Soft Q critic network. |
Module Contents
- class stable_learning_control.algos.pytorch.policies.critics.Q_critic.QCritic(obs_dim, act_dim, hidden_sizes, activation=nn.ReLU, output_activation=nn.Identity)[source]
Bases:
torch.nn.Module
Soft Q critic network.
Initialise the QCritic object.
- Parameters:
obs_dim (int) – Dimension of the observation space.
act_dim (int) – Dimension of the action space.
hidden_sizes (list) – Sizes of the hidden layers.
activation (
torch.nn.modules.activation
, optional) – The activation function. Defaults totorch.nn.ReLU
.output_activation (
torch.nn.modules.activation
, optional) – The activation function used for the output layers. Defaults totorch.nn.Identity
.
- forward(obs, act)[source]
Perform forward pass through the network.
- Parameters:
obs (torch.Tensor) – The tensor of observations.
act (torch.Tensor) – The tensor of actions.
- Returns:
The tensor containing the Q values of the input observations and actions.
- Return type: