Source code for stable_learning_control.algos.tf2.policies.lyapunov_actor_twin_critic

"""Lyapunov (soft) Actor-Twin critic policy.

This module contains a modified Pytorch implementation of the Lyapunov Actor-Critic
policy of `Han et al. 2020 <https://arxiv.org/abs/2004.14288>`_. Like the original SAC
algorithm, this LAC variant uses two critics instead of one to mitigate a possible
underestimation bias, while the original LAC only uses one critic.
"""

import tensorflow as tf
from tensorflow import nn

from stable_learning_control.algos.tf2.policies.actors.squashed_gaussian_actor import (
    SquashedGaussianActor,
)
from stable_learning_control.algos.tf2.policies.critics.L_critic import LCritic
from stable_learning_control.common.helpers import strict_dict_update
from stable_learning_control.utils.log_utils.helpers import log_to_std_out

[docs]HIDDEN_SIZES_DEFAULT = {"actor": (256, 256), "critic": (256, 256)}
[docs]ACTIVATION_DEFAULT = {"actor": nn.relu, "critic": nn.relu}
[docs]OUTPUT_ACTIVATION_DEFAULT = { "actor": nn.relu, }
[docs]class LyapunovActorTwinCritic(tf.keras.Model): """Lyapunov (soft) Actor-Twin Critic network. Attributes: self.pi (:class:`~stable_learning_control.algos.tf2.policies.actors.squashed_gaussian_actor.SquashedGaussianActor`): The squashed gaussian policy network (actor). self.L (:obj:`~stable_learning_control.algos.tf2.policies.critics.L_critic.LCritic`): The soft L-network (critic). self.L2 (:obj:`~stable_learning_control.algos.tf2.policies.critics.L_critic.LCritic`): The second soft L-network (critic). """ # noqa: E501 def __init__( self, observation_space, action_space, hidden_sizes=HIDDEN_SIZES_DEFAULT, activation=ACTIVATION_DEFAULT, output_activation=OUTPUT_ACTIVATION_DEFAULT, name="lyapunov_actor_critic", ): """Initialise the LyapunovActorTwinCritic object. Args: observation_space (:obj:`gym.space.box.Box`): A gymnasium observation space. action_space (:obj:`gym.space.box.Box`): A gymnasium action space. hidden_sizes (Union[dict, tuple, list], optional): Sizes of the hidden layers for the actor. Defaults to ``(256, 256)``. activation (Union[:obj:`dict`, :obj:`tf.keras.activations`], optional): The (actor and critic) hidden layers activation function. Defaults to :obj:`tf.nn.relu`. output_activation (Union[:obj:`dict`, :obj:`tf.keras.activations`], optional): The actor output activation function. Defaults to :obj:`tf.nn.relu`. name (str, optional): The name given to the LyapunovActorCritic. Defaults to "lyapunov_actor_critic". .. note:: It is currently not possible to set the critic output activation function when using the LyapunovActorTwinCritic. This is since it by design requires the critic output activation to by of type :meth:`tf.math.square`. """ # noqa: E501 super().__init__(name=name)
[docs] obs_dim = observation_space.shape[0]
[docs] act_dim = action_space.shape[0]
# Parse hidden sizes, activation inputs arguments and action_limits hidden_sizes, _ = strict_dict_update(HIDDEN_SIZES_DEFAULT, hidden_sizes) activation, _ = strict_dict_update(ACTIVATION_DEFAULT, activation) output_activation, ignored = strict_dict_update( OUTPUT_ACTIVATION_DEFAULT, output_activation )
[docs] act_limits = {"low": action_space.low, "high": action_space.high}
if "critic" in ignored: log_to_std_out( ( "The critic output activation function was ignored since it can " "not be set using the LyapunovActorTwinCritic architecture. This is " "since it, by design, uses the 'tf.math.square' output activation " "function." ), type="warning", )
[docs] self.pi = SquashedGaussianActor( obs_dim=obs_dim, act_dim=act_dim, hidden_sizes=hidden_sizes["actor"], activation=activation["actor"], output_activation=output_activation["actor"], act_limits=act_limits, )
[docs] self.L = LCritic( obs_dim=obs_dim, act_dim=act_dim, hidden_sizes=hidden_sizes["critic"], activation=activation["critic"], )
[docs] self.L2 = LCritic( obs_dim=obs_dim, act_dim=act_dim, hidden_sizes=hidden_sizes["critic"], activation=activation["critic"], )
# Perform one forward pass to initialise the networks. # NOTE: Done because TF doesn't support multiple positional arguments when using # the tf.function decorator, and autograph doesn't support list unpacking.
[docs] obs_dummy = tf.random.uniform((1, obs_dim), dtype=tf.float32)
[docs] act_dummy = tf.random.uniform((1, act_dim), dtype=tf.float32)
self([obs_dummy, act_dummy]) @tf.function
[docs] def call(self, inputs, deterministic=False, with_logprob=True): """Performs a forward pass through all the networks (Actor and both L critics). Args: inputs (tuple): tuple containing: - obs (tf.Tensor): The tensor of observations. - act (tf.Tensor): The tensor of actions. deterministic (bool, optional): Whether we want to use a deterministic policy (used at test time). When true the mean action of the stochastic policy is returned. If false the action is sampled from the stochastic policy. Defaults to ``False``. with_logprob (bool, optional): Whether we want to return the log probability of an action. Defaults to ``True``. Returns: (tuple): tuple containing: - pi_action (:obj:`tf.Tensor`): The actions given by the policy. - logp_pi (:obj:`tf.Tensor`): The log probabilities of each of these actions. - L (:obj:`tf.Tensor`): First critic L values. - L2 (:obj:`tf.Tensor`): Second critic L values. .. note:: Useful for when you want to print out the full network graph using TensorBoard. """ # noqa: E501 obs, act = inputs pi_action, logp_pi = self.pi( obs, deterministic=deterministic, with_logprob=with_logprob ) L = self.L([obs, act]) L2 = self.L2([obs, act]) return pi_action, logp_pi, L, L2
@tf.function
[docs] def act(self, obs, deterministic=False): """Returns the action from the current state given the current policy. Args: obs (numpy.ndarray): The current observation (state). deterministic (bool, optional): Whether we want to use a deterministic policy (used at test time). When true the mean action of the stochastic policy is returned. If ``False`` the action is sampled from the stochastic policy. Defaults to ``False``. Returns: numpy.ndarray: The action from the current state given the current policy. """ # Make sure the batch dimension is present (Required by tf.keras.layers.Dense) if obs.shape.ndims == 1: obs = tf.reshape(obs, (1, -1)) a, _ = self.pi(obs, deterministic, False) return tf.squeeze( a, axis=0 ) # NOTE: Squeeze is critical to ensure a has right shape.