stable_learning_control.algos.tf2.policies.lyapunov_actor_twin_critic
Lyapunov (soft) Actor-Twin critic policy.
This module contains a modified Pytorch implementation of the Lyapunov Actor-Critic policy of Han et al. 2020. Like the original SAC algorithm, this LAC variant uses two critics instead of one to mitigate a possible underestimation bias, while the original LAC only uses one critic.
Attributes
Classes
Lyapunov (soft) Actor-Twin Critic network. |
Module Contents
- stable_learning_control.algos.tf2.policies.lyapunov_actor_twin_critic.OUTPUT_ACTIVATION_DEFAULT[source]
- class stable_learning_control.algos.tf2.policies.lyapunov_actor_twin_critic.LyapunovActorTwinCritic(observation_space, action_space, hidden_sizes=HIDDEN_SIZES_DEFAULT, activation=ACTIVATION_DEFAULT, output_activation=OUTPUT_ACTIVATION_DEFAULT, name='lyapunov_actor_critic')[source]
Bases:
tf.keras.Model
Lyapunov (soft) Actor-Twin Critic network.
- self.pi
The squashed gaussian policy network (actor).
- Type:
Initialise the LyapunovActorTwinCritic object.
- Parameters:
observation_space (
gym.space.box.Box
) – A gymnasium observation space.action_space (
gym.space.box.Box
) – A gymnasium action space.hidden_sizes (Union[dict, tuple, list], optional) – Sizes of the hidden layers for the actor. Defaults to
(256, 256)
.activation (Union[
dict
,tf.keras.activations
], optional) – The (actor and critic) hidden layers activation function. Defaults totf.nn.relu
.output_activation (Union[
dict
,tf.keras.activations
], optional) – The actor output activation function. Defaults totf.nn.relu
.name (str, optional) – The name given to the LyapunovActorCritic. Defaults to “lyapunov_actor_critic”.
Note
It is currently not possible to set the critic output activation function when using the LyapunovActorTwinCritic. This is since it by design requires the critic output activation to by of type
tf.math.square()
.- call(inputs, deterministic=False, with_logprob=True)[source]
Performs a forward pass through all the networks (Actor and both L critics).
- Parameters:
inputs (tuple) –
tuple containing:
obs (tf.Tensor): The tensor of observations.
act (tf.Tensor): The tensor of actions.
deterministic (bool, optional) – Whether we want to use a deterministic policy (used at test time). When true the mean action of the stochastic policy is returned. If false the action is sampled from the stochastic policy. Defaults to
False
.with_logprob (bool, optional) – Whether we want to return the log probability of an action. Defaults to
True
.
- Returns:
tuple containing:
- Return type:
(tuple)
Note
Useful for when you want to print out the full network graph using TensorBoard.
- act(obs, deterministic=False)[source]
Returns the action from the current state given the current policy.
- Parameters:
obs (numpy.ndarray) – The current observation (state).
deterministic (bool, optional) – Whether we want to use a deterministic policy (used at test time). When true the mean action of the stochastic policy is returned. If
False
the action is sampled from the stochastic policy. Defaults toFalse
.
- Returns:
The action from the current state given the current policy.
- Return type: