stable_learning_control.algos.tf2.policies.soft_actor_critic

Soft actor critic policy.

This module contains a TensorFlow 2.x implementation of the Soft Actor Critic policy of Haarnoja et al. 2019.

Attributes

HIDDEN_SIZES_DEFAULT

ACTIVATION_DEFAULT

OUTPUT_ACTIVATION_DEFAULT

Classes

SoftActorCritic

Soft Actor-Critic network.

Module Contents

stable_learning_control.algos.tf2.policies.soft_actor_critic.HIDDEN_SIZES_DEFAULT[source]
stable_learning_control.algos.tf2.policies.soft_actor_critic.ACTIVATION_DEFAULT[source]
stable_learning_control.algos.tf2.policies.soft_actor_critic.OUTPUT_ACTIVATION_DEFAULT[source]
class stable_learning_control.algos.tf2.policies.soft_actor_critic.SoftActorCritic(observation_space, action_space, hidden_sizes=HIDDEN_SIZES_DEFAULT, activation=ACTIVATION_DEFAULT, output_activation=OUTPUT_ACTIVATION_DEFAULT, name='soft_actor_critic')[source]

Bases: tf.keras.Model

Soft Actor-Critic network.

self.pi

The squashed gaussian policy network (actor).

Type:

SquashedGaussianActor

self.Q1

The first soft Q-network (critic).

Type:

QCritic

self.Q1
Type:

QCritic); The second soft Q-network (critic

Initialise the SoftActorCritic object.

Parameters:
  • observation_space (gym.space.box.Box) – A gymnasium observation space.

  • action_space (gym.space.box.Box) – A gymnasium action space.

  • hidden_sizes (Union[dict, tuple, list], optional) – Sizes of the hidden layers for the actor. Defaults to (256, 256).

  • activation (Union[dict, tf.keras.activations], optional) – The (actor and critic) hidden layers activation function. Defaults to tf.nn.relu.

  • output_activation (Union[dict, tf.keras.activations], optional) – The (actor and critic) output activation function. Defaults to tf.nn.relu for the actor and the Identity function for the critic.

  • name (str, optional) – The name given to the SoftActorCritic. Defaults to “soft_actor_critic”.

obs_dim[source]
act_dim[source]
act_limits[source]
pi[source]
Q1[source]
Q2[source]
obs_dummy[source]
act_dummy[source]
call(inputs, deterministic=False, with_logprob=True)[source]

Performs a forward pass through all the networks (Actor, Q critic 1 and Q critic 2).

Parameters:
  • inputs (tuple) –

    tuple containing:

    • obs (tf.Tensor): The tensor of observations.

    • act (tf.Tensor): The tensor of actions.

  • deterministic (bool, optional) – Whether we want to use a deterministic policy (used at test time). When true the mean action of the stochastic policy is returned. If false the action is sampled from the stochastic policy. Defaults to False.

  • with_logprob (bool, optional) – Whether we want to return the log probability of an action. Defaults to True.

Returns:

tuple containing:

  • pi_action (tf.Tensor): The actions given by the policy.

  • logp_pi (tf.Tensor): The log probabilities of each of these actions.

  • Q1(tf.Tensor): Q-values of the first critic.

  • Q2(tf.Tensor): Q-values of the second critic.

Return type:

(tuple)

Note

Useful for when you want to print out the full network graph using TensorBoard.

act(obs, deterministic=False)[source]

Returns the action from the current state given the current policy.

Parameters:
  • obs (tf.Tensor) – The current observation (state).

  • deterministic (bool, optional) – Whether we want to use a deterministic policy (used at test time). When true the mean action of the stochastic policy is returned. If False the action is sampled from the stochastic policy. Defaults to False.

Returns:

The action from the current state given the current policy.

Return type:

numpy.ndarray